

Calhoun: The NPS Institutional Archive DSpace Repository

A circuit model for two-path cutoff waveguide dielectric resonator filters

Miller, Gregory A.
Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/38552

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

NAVAL POSTGRADUATE SCHOOL Monterey, California

AD-A247 785

DTIC
ELECTE
MAR 261992
D

THESIS

CUTOFF WAVEGUIDE
DIELECTRIC RESONATOR FILTERS
by
Gregory A. Miller
March 1992
Thesis Advisor:
Jeffrey B. Knorr

Approved for public release; distribution is unlimited
'Inclasaimas'
SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

A Circuit Model for Two-Path Cutoff Waveguide Dielectric Resonator Filters
by

Gregory A. Miller
Lieutenant, United States Navy B.S.E.E., United States Naval Academy, 1987

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL March 1992

Author:
Δ Gtegory A. Miller

Approved by:
Jeffrey B. Knorr, Thesis Advisor

David C. Senn, Second Reader

Michael A. Morgan, Chairman
Department of Electrical and Computer Engineering

ABSTRACT

This thesis describes the development of a CAD circuit model for two-path cutoff waveguide dielectric resonator filters. The model was verified using published data of known designs in X-band waveguide. Results from the model agree very well with experimental data.

Also, a method for designing this type of filter is proposed. It makes use of commercially available CAD software. An example of the design procedure is given, along with experimental data obtained from a filter manufactured according to the design.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. OBJECTIVES 2
II. PREVIOUS DESIGNS 3
A. ONE-PATH FILTERS 3
B. TWO-PATH FILTERS 4
C. DESIGN PROCEDURES 6
III. EQUIVALENT CIRCUIT MODEL 9
A. BASIC MODEL 9
B. A SPECIFIC EXAMPLE 11
C. IMPROVEMENT TO E-PLANE DISCONTINUITY MODEL 15

1. Investigation of bifurcated waveguide with a dielectric block 16
2. Matching the experimental data 17
D. FINAL MODEL 18
IV. A DESIGN PROCEDURE 21
f. SELECTING THE OPTIMIZER 21
B. DESIGN PROCEDURE 22
C. A DESIGN EXAMPLE 27
D. EXPERIMENTAL PERFORMANCE OF DESIGNED FILTER 31
V. CONCLUSIONS AND RECOMMENDATIONS 36
A. CONCLUSIONS 36
B. RECOMMENDATIONS FOR FURTHER STUDY 36
APPENDIX A. BASIC MODEL TOUCHSTONE CIRCUIT FILE 38
APPENDIX B. TOUCHSTONE DATA FILES 41
A. $L=100 \mathrm{mils}$ 41
B. $\quad L=150 \mathrm{mils}$ 41
C. $L=200 \mathrm{mils}$ 42
D. $L=250 \mathrm{mils}$ 42
E. $L=300 \mathrm{mils}$ 42
APPENDIX C. DISCONTINUITY MODEL TOUCHSTONE CIRCUIT FILE 44
APPENDIX D. FINAL MODEL TOUCHSTONE CIRCUIT FILE 47
APPENDIX E. SEPARATED PATHS TOUCHSTONE CIRCUIT FILE 50
APPENDIX F. OPTIMIZED FILTER DESIGN TOUCHSTONE CIRCUITFILE54
LIST OF REFERENCES 58

LIST OF TABLES

TABLE 1. DESIGN SPECIFICATIONS 12
TABLE 2. DESIGN PARAMETERS 13
TABLE 3. DISCONTINUITY ELEMENT VALUES 18
TABLE 4. DESIGN SPECIFICATIONS 27
TABLE 5. FIXED DESIGN PARAMETERS 28
TABLE 6. OPTIMIZED PARAMETERS 28
TABLE 7. PARAMETERS OF MANUFACTURED FILTER 31

LIST OF FIGURES

Figure 1. Evanescent-mode waveguide dielectric resonator
filter 4
Figure 2. Two-path cutoff waveguide dielectric resonator filter 5
Figure 3. Symmetric T-equivalent circuit 6
Figure 4. An equivalent circuit with generalized scattering matrices 7
Figure 5. Asymmetric T-equivalent circuit 8
Figure 6. Inductive Π-equivalent circuit of below-cutoff section 9
Figure 7. Capacitive window 11
Figure 8. Basic circuit model of the two-path filter 12
Figure 9. Measured response of the filter 13
Figure 10. Frequency response of the basic model 14
Figure 11. Frequency response of the basic model 15
Figure 12. Modification to the model 16
Figure 13. Bifurcated WG with dielectric block 17
Figure 14. Frequency response of the final model 19
Figure 15. Frequency response of the final model 20
Figure 16. Frequency response of main path 25
Figure 17. Frequency response of subsidiary path 25
Figure 18. Frequency response of the designed model 29
Figure 19. Frequency response of the designed model 30
Figure 20. Frequency response of the main path 30
Figure 21. Photograph of disassembled filter 32
Figure 22. Photograph of assembled filter 32
Figure 23. Frequency response of manufactured filter 34
Figure 24. Frequency response of manufactured filter 34
Figure 25. Frequency response of model as manufactured 35
Figure 26. Frequency response of model as manufactured 35

ACRNOWLEDGEMENTS

I would like to thank my wife, Karrie, for her patience and understanding, Prof. Knorr, for his support and guidance, the Mechanical Engineering Department machine shop for manufacturing the prototype filter, and the Educational Media Department photo lab for photographing the filter.

I. INTRODUCTION

A. BACRGROUND

A two-path cutoff waveguide dielectric resonator filter is a new type of evanescent-mode waveguide bandpass filter consisting of dielectric resonators incorporated in two parallel cutoff waveguide paths. The two paths are realized by a complete E-plane bifurcation of a standard size rectangular waveguide. The resonators are realized using dielectric blocks of low permittivity within the cutoff sections. This type of filter was first proposed by Shigesawa, et al., in 1986 [Ref. 1] and modified by the same authors in 1989 [Ref. 2]. However, evanescent-mode waveguide dielectric resonator filters using low permittivity dielectric material were first proposed much earlier.

The basic idea behind these structures is that a bandpass filter can be constructed from a series of resonators. Each resonator can be pictured as a short section of transmission line terminated at both ends with a large discontinuity. The frequency of resonance depends on the length of the transmission line and the discontinuity elements. The resonators in the subject filters are the dielectric blocks in the below cutoff sections. The
dielectric drops the cutoff frequency to well below the desired passband frequencies, hence making a short propagating section. The discontinuities are the below cutoff air-filled sections which behave like large inductive susceptances.

B. OBJECTIVES

The objective of this thesis is to describe a CAD compatible equivalent circuit model for two-path cutoff waveguide dielectric resonator filters. The model is verified by comparing its frequency response to published experimental data obtained from proven designs.

The secondary objective is to describe a design method using the model and the resident optimizers available in the microwave circuit CAD software package Touchstone available from EEsof. Design by optimizers is faster and more reliable than the design methods described in previous work.

II. PREVIOUS DESIGNS

A. ONE-PATH FILTERS

A typical early design of evanescent-mode waveguide dielectric resonator filters using dielectrics with low relative permittivity is given by Shih and Gray [Ref. 3]. The proposed structure was then a section of below cutoff rectangular waveguide loaded with dielectric resonators such that short blocks of dielectric material completely filled the cross section of the waveguide. This was coupled to the external circuit (a larger rectangular waveguide) via a double-step waveguide junction. The devices that were built used NR-42 as the larger waveguide and $W R-22$ as the smaller guide. A typical configuration is shown in Fig. 1 .

This design has several drawbacks. The fist being the double step junction between different sizes of waveguide. A junction like this is not easy to manufacture, susceptible to stress failure, and is difficult to reproduce with reasonable tolerances. Also, positioning the dielectric blocks within the smaller section accurately is almost impossible. Not all the drawbacks are mechanical in nature, however. The cutoff characteristics of the device allow higher irequencies to couple into the structure just slightly more efficiently than the lower frequencies. This

Figure 1. Evanescent-mode waveguide dielectric resonator filter
leads to asymmetric stopband characteristics. That is, the upper skirt of the passband is less steep than the lower skirt. This is often an undesirable phenomenon.

B. TWO-PATH FILTERS

A better structure was proposed [Ref. 1] which eliminated most of the disadvantages of the first designs. It was a two path structure made by bifurcating a rectangular waveguide with a thin metal strip. This structure is shown in Fig. 2. The inherent advantages of this design include ease of manufacture and good reproduceability. Also, the resonant frequencies of either

Figure 2. Two-path cutoff waveguide dielectric resonator filter
side of the bifurcated waveguide can be different from each other. The passband around the center frequency is set by the main path and is largely unaffected by the subsidiary path because the wave through that side is heavily attenuated by the cutoff nature of the bifurcated section around the passband frequencies. The resonant frequency of the subsidiary path can be higher than the passband set by the main path. The wave passing through that side at the subsidiary resonant frequency can be made equal in magnitude to that passing through the main path but 180° out of phase, hence the vector sum of both waves at that frequency is zero. This creates an attenuation pole which provides a steep skirt on the high frequency side of the passband. The chief advantage of this scheme is that the main path can be designed to meet a passband requirement, the subsidiary path
can be designed to meet a stopband requirement, and each path can be designed independently.
C. DESIGN PROCEDURES

The two-path structure described requires both a generalized scattering matrix technique and a less exact method using impedance converters. The structure is considered to be a direct-coupled cavity filter and is designed with a procedure based on that used by Levy [Ref. $4]$.

Because the subsidiary path has a negligible effect on the passband, it is replaced by a hypothetical infinitely lor.g homogeneous below cutoff section in the design of the main path. The below cutoff sections in the main path are replaced by impedance inverters whose parameters, K and Φ, can be calculated from the T-equivalent circuit of a below cutoff section of waveguide of the appropriate length as shown in Fig. 3. The desired passband response then

Figure 3. Symmetric T-equivalent circuit
determines the impedance inverters' parameters which determine X_{a} and X_{b} of the T-equivalent circuit which in turn give the necessary length of the below cutoff section.

The stopband response, however, requires the use of full wave, multimode analysis. All sections in the bifurcated waveguide are replaced by their generalized scattering matrices which take into account several higher-order modes as well as the fundamental mode. This is shown in Fig. 4.

Figure 4. An equivalent circuit with generalized scattering matrices

The matrix element S_{21} of the overall scattering matrix of the entire network can then be determined. It is a function of the main path, which has already been specified, and the length and ϵ_{r} of the dielectric block in the subsidiary path. A CAD method was developed [Ref. 1] to determine the length of the dielectric biock given the desired minimum loss in the stopband, the value of ϵ_{r}, and the main path design.

The most apparent drawback of this method is that the T equivalent circuits modeling the first and last below cutoff sections are not symmetric, as assumed. The discontinuity
caused by the edge of the bifurcating metal plate results in an equivalent circuit shown in Fig. 5. The shunt reactance

Figure 5. Asymmetric T-equivalent circuit
element X_{c} must be canceled by another shunt reactance element $-X_{c}$. This additional element is realized by a capacitive window designed to provide the correct reactance at the passband center frequency, f_{0}. Windows are placed half a guided wavelength (at f_{0}) from both the input and output discontinuity planes. Without the windows, passband ripple would greatly exceed design requirements.
III. EQUIVALENT CIRCUIT MODEL

A. BASIC MODEL

The filter can be realized in the most rudimentary sense as a series of short rectangular waveguide sections with different values of relative permittivity. The height of each section in the model is the same as the height of the physical waveguide. The width of each section in the model is the same as the bifurcated section (the two sides are not

Figure 6. Inductive Π-equivalent circuit of below-cutoff section
necessarily identical). The below-cutoff sections may be replaced by their inductive Π-equivalent circuits as shown in Fig 6. The inductance values are given [Ref. 5] by

$$
\begin{equation*}
L_{g 1}=L_{g 2}=\left(X_{0} / 2 \pi f\right) \operatorname{coth}(\alpha T / 2) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
L_{g 3}=\left(X_{0} / 2 \pi f\right) \sinh (\alpha T) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
X_{0}=120 \pi(2 b / a) \sqrt{\left(f_{c} / f\right)^{2}-1} \tag{3}\\
\alpha=(2 \pi / \lambda) \sqrt{\left(f_{c} / f\right)^{2}-1} \tag{4}
\end{gather*}
$$

b, a, T are the height, width, and length of the belowcutoff section, and f_{c} is its cutoff frequency. These circuit elements are thus frequency-dependent. However, they can be computed analytically in a straightforward fashion. A disadvantage to using them is their frequencydependence, which makes calculations necessary at each frequency point, which in turn makes simulation a slow and inefficient process. The thickness of the bifurcating metal strip is of little importance at this point. The lead section of one half λ_{g} at f_{0} is an air-filled length of standard rectangular waveguide.

The reactance elements realized by symmetric capacitive windows are incorporated in the model as frequency-dependent capacitors. The value of these elements is given [Ref. 6: pp. 314-315] by

$$
\begin{equation*}
\frac{B_{c}}{Y_{o}}=\frac{4 b}{\lambda_{g}} \ln \left(\csc \left(\frac{\pi d}{2 b}\right)\right), \tag{5}
\end{equation*}
$$

where B_{c} is the susceptance, Y_{o} is the characteristic admittance, b is the height of the rectangular waveguide, and d is the size of the window as shown in Fig. 7. In the

Figure 7. Capacitive window
computer model, the normalized susceptance must be converted to a value of capacitance by dividing it by $2 \pi f Z$ 。 where the characteristic impedance is frequency-dependent.

The discontinuity of the thin bifurcating metal plate is the most challenging part of the model. It is also very critical. Previous studies of a thin metal septum in waveguide [Ref. 5] suggest that the discontinuity is most simply modeled by a single, frequency-dependent inductor. For better accuracy, it can be modeled using a fixed inductor in parallel with a fixed capacitor.

When all the pieces are finally brought together, the entire model appears as shown in Fig. 8.

B. A SPECIFIC EXAMPLE

The first device to be modeled was a filter described by Shigesawa et al. [Ref. 2]. This particular device was chosen because the design specifications and parameters were given along with experimental results. The filter design specifications are given in Table 1 , the filter parameters are given in Table 2, and the measured insertion loss is shown in Fig. 9. The residual insertion loss of about 0.5

Figure 8. Basic circuit model of the two-path filter
$d B$ in the passband is attributed to gaps between the dielectric blocks and the waveguide walls.

TABLE 1. DESIGN SPECIFICATIONS

Passband response	3 -poles, 0.1 dB Chebyshev
Center frequency	$f_{0}=9.5 \mathrm{GHz}$
Bandwidth	$\Delta f=0.3 \mathrm{GHz}$
Fixed attenuation pole or stopband edge	$f_{\infty 1}$ or $f_{11}=11.0 \mathrm{GHz}$
Minimum insertion loss in the stopband	$L_{\min }=50 \mathrm{~dB}$

TABLE 2. DESIGN PARAMETERS

Parameter	Length (cm)
a_{1}	1.18
a_{r}	1.09
l_{1}	0.69
l_{2}	1.33
l_{3}	2.01
$\mathrm{~d}_{1}$	0.40
$\mathrm{~d}_{2}$	0.40
$\mathrm{~d}_{3}$	1.22
ϵ_{r}	3.78

Figure 9. Measured response of the filter
The Touchstone circuit file incorporating the model is included as Appendix A. The model is the same as that shown in Fig. 8, with the parameters set to the values given in Table 2. Input and output ports are terminated in a matched
load (RWGT). The capacitive windows are modeled as described previously (Eq. 5). The one-half guided wavelength at f_{0} is incorporated not as a fixed length, but as a function of $f_{\text {o }}$ itself. This does not significantly affect the time of a frequency sweep as the calculation is done only once.

The results of sweeping this model are shown in Fig. 10. and Fig. 11. A comparison of these figures to Fig. 9 indicates the gross features of the experimental frequency response are simulated well by the model. These include the resonance at 8.1 GHz and the attenuation pole at 11.0 GHz .

Figure 10. Frequency response of the basic model

Figure 11. Freguency response of the basic model

However, the exact characteristics of the passband are less than satisfactory.

C. IMPROVEMENT TO E-PLANE DISCONTINUITY MODEL

Analysis of Fig. 11 indicates that the passband ripple is 1.1 dB when a ripple of 0.5 dB was expected. Although the performance specifications cailed for a 0.1 dB ripple, the goal was to match the performance of the physical device, so the model's performance must be compared to the experimental results.

It was determined that the best modification to the model was to change the discontinuity elements from a single
parallel inductor and capacitor to a pair of parallel inductors and capacitors. That is, a different inductor and capacitor value would be associated with the main path and the subsidiary path. This modification can be seen in Fig. 12. The reasoning behind this configuration is that the presence of the dielactric block in the below cutoff section has an affect on the discontinuity element values. Instead of being 14.0 nH in parallel with 0.003 pF as in the case of

Figure 12. Modification to the model
a long section of air-filled bifurcated waveguide, they would be different.

1. Investigation of bifurcated waveguide with a
dielectric block
The problem, of course, was to determine the values of the new elements. To this end, a long section of bifurcated waveguide with a small dielectric block was constructed in the lah as shown in Fig. 13. The scattering parameter S_{11}
was measured at every 500 MHz from 8.0 GHz to 12.0 GHz . Also, several sweeps were made. Each time, the distance, L, from the discontinuity plane and the leading edge of the

Figure 13. Bifurcated $W G$ with dielectric block dielectric block was increased. The lengths used were 100, 150, 200, 250, and 300 mils. The data was collected at each point via a slotted line and a VSWR meter. It consisted of the distance between a null with a short and a null with the bifurcated waveguide. It also included the difference in magnitude between adjacent VSWR minima and maxima. The final results of this experiment, represented as angle and magnitude of S_{11} at each frequency, are included as Appendix B.
2. Matching the experimental data

To determine the discontinuity element values, the experimental set up was modeled in a Touchstone file included as Appendix C. This file incorporates the discontinuity elements as a different pair of parallel
inductors and capacitors like that shown in Fig. 12 above. The elements associated with the section with no dielectric block were given the proven values of 14.0 nH and 0.003 pF . The optimizers available in Touchstone were used to determine the values associated with the dielectric-loaded section which resulted in the best agreement between experimental data and that produced by the model. The results are shown in Table 3.

TABLE 3. DISCONTINUITY ELEMENT VALUES

$\mathrm{L}(\mathrm{mils})$	$\mathrm{L}_{\mathrm{pm}}(\mathrm{nH})$	$\mathrm{C}_{\mathrm{rm}}(\mathrm{pF})$
300	15.21	0.001
250	16.55	0.00025
200	18.60	0.00019

Unfortunately, Touchstone exhibits some anomalous behavior when very short rectangular waveguide sections are used. That is, at $L \approx 190$ mils, the frequency response was no longer as well behaved or predictable as it was with longer sections. This means that discontinuity element values for $L=150 \mathrm{mils}$ and $L=100 \mathrm{mils}$ were not found.

D. FINAL MODEL

Once the proper discontinuity elements had been found, they were incorporated in the model. The Touchstone circuit
file incorporating this modification is included as Appendix D. It is still based on the design reported in Ref. 2.

The frequency response of this model is shown in Fig. 14 and Fig. 15. Although the ripple in the passband is 0.8 dB , it is far better than that given by any other configuration. Also, the position of the attenuation pole at 11.0 GHz as well as the lower-order mode subsidiary path resonance at 8.1 GHz are positioned exactly as reported by Shigesawa et al.

IV. A DESIGN PROCEDURE

A. SELECTING THE OPTIMIZER

The optimizer resident in Touchstone uses one of three search procedures in conjunction with one of four cost functions [Ref. 7]. Choosing the correct search procedure and the correct cost function to be minimized are vital to obtaining a reasonable design in a short period of time.

It was decided to start the search using the Random Search procedure in which new values for the user-specified parameters are selected by a random number generator. Although a random search may appear inefficient, it is faster than the Gradient Search which chooses values according to the gradient of the cost function (it always moves in the direction of decreasing cost). Once the Random Search produces parameter values nearing a solution as indicated by a slowly decreasing cost function, the Gradient Search was used to further refine the design. Thus, the best solution is found in the shortest time. The third search method, Quasi-Newton, was not used because a single iteration required a much longer time than was deemed reasonable.

Selecting the appropriate cost function was less difficult. The Minimax Cost Function leads to a solution in
which the point of maximum error is minimized. That is, it leads to an equal ripple solution. This would appear to be the ideal selection as the design will ultimately resemble a Chebyshev response. However, Minimax (as well as the Least $P^{\text {th }}$ cost function) are very limited in the number of frequency points allowed, which makes them unusable for such a complicated problem. The third cost function, known as Worst-case, is used to negate the error function, thereby allowing one to find the worst instead of the best solution. Although useful for a worst case analysis of a circuit, it is inappropriate for a design procedure. The last cost function is the Least Squares Cost Function. In it, the squared error between actual response and desired response at each frequency is minimized. This cost function was chosen because of its simplicity and the fact that the other cost functions had been eliminated.

B. DESIGN PROCEDURE

The actual values of the individual elements of the device will be found by the optimizer (Random then Gradient search procedures using the Least Squares error function). Many parameters will have to be selected for the optimizer to function correctly. That is, almost the entire circuit file must be set up leaving only a few parameters to be found. First, the size of the waveguide to be used including the dimensions of the main and subsidiary path
must be chosen. Of course, the value of the dielectric's relative permittivity, ϵ_{f}, must be chosen based on available materials. Because the values of the discontinuity elements depend on the distance between the first dielectric block and the edge of the bifurcating metal septum, the value of l_{1} (in Fig. 2) must be fixed along with the associated discontinuity elements. Once the circuit file has been created with the appropriate values, the optimizer will find the values of $d_{1}, d_{2}, d_{3}, l_{2}, l_{3}$, and d (the size of the capacitive window).

The entire filter cannot be designed at once. Separation of the main and subsidiary paths is necessary. The main path which determines the passband characteristics must be designed first and then the subsidiary path must be determined. First, the subsidiary path is replaced by a long section of below-cutoff waveguide. The length depends on the size of the guide. For example, 7 cm is $l_{1} \gamma$ enough for standard WR-90. The discontinuity elements associated with the subsidiary path must remain in place. Given a reasonable goal, such as FIL_CW $\mathrm{DB}[\mathrm{S} 21]>-0.1$ in the OPT block of the circuit file, the optimizer will find the best values of l_{2}, d_{1}, d_{2}, and d. Once these numbers are set, the subsidiary path will be replaced. To ensure the subsidiary path will be the same length as the main path, the lines

L TOT $=2$ * $(\mathrm{L} 1+\mathrm{L} 2+\mathrm{D} 1)+\mathrm{D} 2$
$\mathrm{L} \overline{3}=\left(\mathrm{L} _\mathrm{TOT}-\mathrm{D} 3\right) / 2$
must be included in the $E Q N$ block. Thus, d_{3}, the length of the dielectric block in the subsidiary path, can be varied alone while keeping the total length of the subsidiary path equal to that of the main path. The subsidiary path is designed only to provide an attenuation pole on the high frequency side of the passband. Because the location of a pole cannot be specified explicitly in the OPT block, the TUNE command will be used to vary d_{3} manually until the pole of the entire model (both main and subsidiary paths at this point) appears at the desired position. Although such a "trial and error" method lacks elegance, it is an efficient way to fix the location of the attenuation pole, and clearly illustrates the power of computer-aided design.

Separation of the two paths for design purposes is allowed [Ref. 2] because the subsidiary path has a negligible effect on the passband response. A Touchstone circuit file exploring this assumption is included as Appendix E. The model parameters are the same as those already given (Table 2). The results of separating the two paths in this file are shown in Fig. 16 and Fig. 17. Comparison of Figs. 14 and 16 reveals that the separation of the two paths is valid. The passband remains essentially unchanged. The high frequency attenuation pole is realized from the outputs of the paths being equal in magnitude (-62 dB) and 180° out of phase (a phase angle of -35° for the

Figure 16. Frequency response of main path

main path and 145° for the subsidiary path), as discussed earlier.

Initial values for d_{1} and d_{2} are set by the desired center frequency of the passband. The $T E_{\text {map }}$ resonant frequency, f_{r}, of a perfect rectangular cavity is given by the equation [Ref. 6: pp. 430-439]:

$$
\begin{equation*}
f_{r}=\frac{c}{\sqrt{\mu_{r}} e_{r}} \sqrt{\left(\frac{m}{2 a}\right)^{2}+\left(\frac{n}{2 b}\right)^{2}+\left(\frac{p}{2 d}\right)^{2}} \tag{6}
\end{equation*}
$$

where a, b, and d are the dimensions of the rectangular cavity. Solving for d in the $T E_{10 p}$ mode results in

$$
\begin{equation*}
c=\frac{p}{2 \sqrt{\frac{f_{r}^{2} \mu_{r} \epsilon_{r}}{c^{2}}-\left(\frac{1}{2 a}\right)^{2}}} . \tag{7}
\end{equation*}
$$

The variab.e d gives the value of d_{1} or d_{2}. Since this equation applies to a perfect cavity, the resonant frequency, f_{r}, must be set well above the desired frequency. Experience indicates a value 1.8 times greater than that desired will be appropriate. In order for this assumption to remain valid, the coupling into the cavity must be similar to that for which the above rule of thumb was formed. Therefore the initial value of l_{2} will be set. The initial value for d_{3} can be found using the same equation. In all cases, the $T E_{101}$ mode as well as the $T E_{102}$ mode should be considered.

C. A DESIGN EXAMPLE

Using the procedure described above, a design example was pursued. The design specifications are given in Table 4. Because the dielectric material to be used had a

TABLE 4. DESIGN SPECIFICATIONS

Passband response	3 poles, 0.1 dB Chebyshev
Center frequency	$f_{0}=10.5 \mathrm{GHz}$
Bandwidth	$\Delta f=0.3 \mathrm{GHz}$
Fixed attenuation pole or stopband edge	$f_{\infty 1}$ or $f_{11}=12.0 \mathrm{GHz}$
Minimum insertion loss in the stopband	$L_{\min }=35 \mathrm{~dB}$

relative permittivity of 2.54 , the center frequency could not be lower than 8.5 GHz because the bifurcated section filled with the dielectric material had a cutoff frequency of 8.23 GHz . The rest of the design specifications are similar to those found in Ref. 2.

The fixed values are summarized in Table 5. To ease fabrication, a standard $W R-90$ waveguide was split in equal halves, so both the main path and the subsidiary path would be the same width. Also, as mentioned above, the only useable dielectric material available was Poly-C with $\epsilon_{\mathrm{r}}=$ 2.54. The value of l_{1} was set at $300 \mathrm{mils}(0.762 \mathrm{~cm})$ because the discontinuity elements associated with that

TABLE 5. FIXED DESIGN PARAMETERS

Parameter	Value
a_{1}	1.143 cm
a_{r}	1.143 cm
ϵ_{r}	2.54
l_{1}	$0.762 \mathrm{~cm}(300 \mathrm{mils})$
I_{pm}	15.21 nH
C_{pm}	0.001 pF

length matched the experimental data gathered earlier slightly better than the other possible choices.

The initial and final values of the optimized parameters are given in Table 6. The Touchstone circuit file

TABLE 6. OPTIMIZED PARAMETERS

Parameter	Initial value (cm)	Final value (cm)
l_{2}	1.00	1.50883
$\mathrm{~d}_{1}$	0.60	0.63037
$\mathrm{~d}_{2}$	0.60	0.60423
d	0.1016	0.14934
$\mathrm{~d}_{3}$	1.22	1.740
l_{3}	$\mathrm{~N} / \mathrm{A}$	2.333

incorporating this design is included as Appendix F. The optimization of the main path was accomplished with the statements

RANGE 10.3510 .65
FIL_CW DB[S21] > -0.1
in the OPT block of the file. The frequency response of the final design is shown in Fig. 18 and Fig. 19. Although the design specifications called for a passband ripple of 0.1 dB , a ripple of 0.2 dB was deemed acceptable in part because the difference between 0.1 dB and 0.2 dB is a difference of less than 2.2%. The response of the main path alone is shown in Fig. 20 to illustrate the effectiveness of the subsidiary path in increasing the steepness of the upper frequency skirt of the passband.

Figure 18. Frequency response of the designed model

Figure 19. Frequency response of the designed model

Figure 20. Frequency response of the main path

D. EXPERIMENTAL PERFORMANCE OF DESIGNED FILTER

The above filter was fabricated in accordance with the above specified parameters. Photographs of the filter are shown in Fig. 21 and Fig. 22. The filter itself was manufactured from aluminum barstock with internal dimensions equivalent to those of standard WR-90 rectangular waveguide. The capacitive windows were cut from a copper sheet 0.05 cm thick. The bifurcating metal septum was cut from copper foil 0.005 cm thick. Because of limitations in the machining process, some measurements were different from those specified. Table 7 summarizes the actual measured dimensions.

TABLE 7. PARAMETERS OF MANUFACTURED FILTER

Parameter	Length (cm)
d_{1}	0.630
d_{2}	0.600
d_{3}	1.740
L_{c}	1.835
d	0.1491
l_{1}	0.762
l_{2}	1.509
l_{3}	2.330

The frequency response of the filter was measured using an HP 8756A Scalar Network Analyzer. The "through"

between the test ports. This was done to remove losses due to the various connectors and adapters from the final results. The frequency response of the filter is shown in Fig. 23 and Fig. 24. The response is very similar to that predicted by the model. The response of the model incorporating the actual measurements is shown in Fig. 25 and Fig. 26. One can see that the gross features of the filter's frequency response were predicted by the model. These include the resonance at about 0.2 GHz and the position and magnitude of the first ripple of the passband. The discrepancies between the model response and the actual response are due to transmission loss, gaps between the waveguide walls and the dielectric blocks, misalignment of the capacitive windows, misalignment between adjacent waveguide sections, misalignment of the two halves of the split sections, and problems with the metal septum which include bends of the septum within the body of the filter, overlap and non-vertical alignment at either end leading to a severe folding of the septum itself.

 Figure 25. Frequency response of model as manufactured

Figure 26. Frequency response of model as manufactured

v. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has shown that a two-path cutoff waveguide dielectric resonator filter can be accurately modeled by a simple equivalent circuit using available library elements in a commercial CAD system. Such a model was developed and its performance was shown to match that of an actual device very closely. The positions of the attenuation poles were placed exactly, and the passband ripple was matched to within 0.3 dB .

The circuit model was then used to successfully design this type of filter to prescribed performance criteria using optimizer algorithms. This design approach proved faster and more accurate than design procedures used previously.

B. RECOMMENDATIONS FOR FURTHER STUDY

The effect of the dielectric blocks on the discontinuity element values requires more study in order to develop a complete list matching the distance between the edge of the metal septum and the first dielectric block with the appropriate discontinuity element values. Strategies other than adding discrete elements should also be thoroughly investigated.

The ultimate goal should be to further automate the design process, allowing a user with little or no experience with these filters to effectively design a filter to meet any specifications.

APPENDIX A. BASIC MODEL TOUCHSTONE CIRCUIT FILE

```
FILE: Two-Path Dielectric Resonator Filter (TPDRF)
USER: LT Gregory Miller
DATE: 24 SEP 91
REVISED: 3 OCT 91
CIRCUIT: Two-path cutoff waveguide dielecrtic resonator
    filter
```

COMMENT: This file is a trial of some different WG/dielectric
combinations. It is based on a design in Ref. 2
It simulates both halves of a split $W G$, with a parallel
inductor and capacitor to model the losses due to the
dicontinuity between the standard WG and the split
section.
It also incorporates the capacitive window absent from
previous programs. It is implemented as a
frequency-dependent capacitor. The frequency dependence
is represented as an equation relating $\mathrm{Bc} / \mathrm{YO}$ to
capacitive window geometry found in Ref. 6 .
DIM
FREQ GHZ
RES OH
IND NH
CAP PF
LNG CM
TIME PS
COND / OH
ANG RAD
VAR
$\mathrm{Ag}=2.286$! WR-90 WG
Al=1.18 ! Left and right halves are not symmetric
$\mathrm{Ar}=1.09$
$B=1.016$
$E R=3.78$! Dielectric constant used by Shigesawa, et al.
$\mathrm{L} 1=0.69$! Length of 1 st \& last air-filled section, main path
$\mathrm{L} 2=1.33$! Length of 2 nd \& 3rd air-filled section, main path
L3 $=2.01$! Length of 1 st \& last air-filled section, subs path
D1=0.40 ! Length of 1st \& last er-filled section, main path
$D 2=0.40$! Length of middle er-filled section, main path
D3 $=1.22$! Length of er-filled section, subsidiary path

```
Cp=0.006 ! Value of parallel capacitor (pF)
Lp=7.0 ! Value of parallel inductor (nH)
d=0.1138 ! Size of capacitive window (cm)
```


EQN

! Equations for $F R E Q-d e p e n d e n t$ element (capacitive window) PI=3. 1415927
$\mathrm{FC}=6.562 \quad$! Cutoff frequency
Fo=9.5 ! Center frequency
lam=30/FREQ ! Wavelength in cm if FREQ in GHz
Gfac=(1-(Fc/FREQ)**2)**0.5 ! Guide factor
lamg=lam/Gfac
ZO=(120*PI*2*B/Ag)/Gfac
! Guided wavelength
! Characteristic impedance
BC_YO $=(4 * B / l a m g) * \operatorname{LN}(1 / S I N(P I * d /(2 * b)))$! Normalized susceptance
$\mathrm{Cc}=1000 * \mathrm{BC}$ YO/ (ZO* $2 * \mathrm{PI}$ *FREQ) ! FREQ-dependent capacitance
Gfaco $=(1-(\overline{\mathrm{F} C / F O}) * * 2) * * 0.5$! Guide factor at Fo
LC=0.5* (30/FO)/Gfaco ! Half a guided wavelength at Fo

CKT

! Define each block
RWG $12 A^{\wedge} A 1$ B^B L^L1 ER=1 RHO=1
DEF2P 12 LWG1
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} D 1$ ER^ER RHO=1
DEF2P 12 LWGD1
RWG $12 A^{\wedge} A 1 B^{\wedge} B$ L^L2 $E R=1 \quad$ RHO=1
DEF2P 12 -WG2
RWG 12 A^Al $\mathrm{B}^{\wedge} \mathrm{B}$ L^D2 ER^ER RHO=1
DEF2P 12 LWGD2
RWG $12 A^{\wedge}$ Ar $B^{\wedge} B$ L^L3 $E R=1 \quad$ RHO=1
DEF2P 12 RWG1
RWG $12 A^{\wedge} A r B^{\wedge} B L^{\wedge} D 3$ ER^ER RHO=1
DEF2P 12 RWGD
! Connect the elements, and define them as LEFT and RIGHT halves.
LWG1 12
LWGD1 23
LWG2 34
LWGD2 45
LWG2 65
LWGD1 76
LWG1 87
DEF2P 18 LEFT
RWG1 12
RWGD 23

RWG1 43
DEF2P 14 RIGHT
! Connect them togetner with a parallel inductor and capacitor at both ends and define it as a two-path bandpass filter (TPBPF). PLC $10 L^{\wedge} \mathrm{Lp} \mathrm{C}^{\wedge} \mathrm{Cp}$ LEFT 12 RIGHT 12
PLC 20 L^Lp C^Cp DEF2P 12 TPBPF
! Connect a capacitive window at the proper length and define
! this as the LEAD section.
CAP $10 \mathrm{C}^{\wedge} \mathrm{Cc}$
RWG $12 A^{\wedge} \mathrm{Ag} \mathrm{B}^{\wedge} \mathrm{B}$ L^LC $\mathrm{ER}=1 \quad \mathrm{RHO}=1$ DEF2P 12 LEAD
! This is a filter with capacitive windows (FIL_CW).
LEAD 12
TPBPF 23
LEAD 43
DEF2P 14 FIL_CW
! Set up termination of matched load.
RWGT 1 A^Ag $B^{\wedge} B \quad E R=1 \quad \mathrm{RHO}=1$
DEFIP 1 WEDGE

TERM
FIL_CW WEDGE WEDGE

PROC

OUT
FIL_CW DB[S21] GR1 ! Insertion loss
! FII_CW DB[S11] GR1 ! Return loss

FREQ
SWEEP 8130.05
SWEEP 8.0 8.3 0.01
SWEEP 10.7511 .10 .01
SWEEP 9.29 .90 .02

GRID
RANGE 8130.5
RANGE $9.0 \quad 10.0 \quad 0.25$
GR1 $-3 \quad 0 \quad 1$

APPENDIX B. TOUCHSTONE DATA FILES

A. $L=100$ mils
! FILE: Bifurcated $W G$ w/ dielectric 100 mils from edge (BIFWG100)
USER: LT Gregory Miller
DATE: 14 NOV 91
! REVISED: 19 NOV 91
\# GHZ S MA R 50
! SCATTERING PARAMETERS:

$!$ FREQ	$/ S 11 /$	$<S 11$
8.0	0.984	149.2
8.5	0.982	140.2
9.0	0.976	117.4
9.5	0.967	166.8
10.0	0.958	142.0
10.5	0.948	134.1
11.0	0.937	122.1
11.5	0.923	115.8
12.0	0.910	97.2

B. $L=150 \mathrm{mils}$
! FILE: Bifurcated $W G$ w/ dielectric 150 mils from edge
! (BIFWG150)
USER: LT Gregory Miller
DATE: 14 NOV 91
! REVISED: 19 NOV 91
\# GHZ S MA R 50
! SCATTERING PARAMETERS:

FRREQ	$/ S 11 /$	$<S 11$
8.0	0.986	149.6
8.5	0.985	142.4
9.0	0.982	124.3
9.5	0.975	149.8
10.0	0.969	135.9
10.5	0.962	126.9
11.0	0.955	119.3
11.5	0.947	112.8
12.0	0.939	94.8

```
C. L = 200 mils
    ! FILE: Bifurcated WG w/ dielectric 200 mils from edge
        (BIFWG200)
    | USER: LT Gregory Miller
    DATE: 14 NOV 91
    REVISED: }19\mathrm{ NOV 91
# GHZ S MA R 50
! SCATTERING PARAMETERS:
\begin{tabular}{llr} 
FREQ & \(/\) S11/ & \(<S 11\) \\
8.0 & 0.984 & 150.0 \\
8.5 & 0.984 & 142.8 \\
9.0 & 0.982 & 130.2 \\
9.5 & 0.979 & 148.7 \\
10.0 & 0.975 & 131.1 \\
10.5 & 0.968 & 126.2 \\
11.0 & 0.960 & 117.8 \\
11.5 & 0.952 & 110.5 \\
12.0 & 0.944 & 96.4
\end{tabular}
D. L = 250 mils
! FILE: Bifurcated WG w/ dielectric 250 mils from edge
                (BIFWG250)
    USER: LT Gregory Miller
    DATE: 14 NOV 91
    ! REVISED: }19\mathrm{ NOV 91
# GHZ S MA R 50
! SCATTERING PARAMETERS:
! FREQ /S11/ <S11
    8.0 0.983 149.6
    8.5 0.982 143.7
    9.0 0.979 134.7
    9.5 0.976 141.5
    10.0 0.971 129.9
    10.5 0.967 122.3
    11.0 0.963 116.4
    11.5 0.959 108.2
    12.0 0.955 96.4
E. L = 300 mils
! FILE: Bifurcated WG w/ dielectric 300 mils from edge
            (BIFWG300)
    USER: LT Gregory Miller
    DATE: }14\mathrm{ NOV 91
    ! REVISED: }19\mathrm{ NOV }9
```

! SCATTERING PARAMETERS:

1		
FREQ	$/ S 11 /$	<S 11
8.0	0.985	140.1
8.5	0.983	143.7
9.0	0.979	136.6
9.5	0.973	137.1
10.0	0.968	132.9
10.5	0.963	122.9
11.0	0.958	115.0
11.5	0.953	109.7
12.0	0.948	96.4

APPENDIX C. DISCONTINUITY MODEL TOUCHSTONE CIRCUIT FILE

FILE: Two-Path Section (TPSEC)
USER: LT Gregory Miller
DATE: 18 OCT 91
REVISED: 11 DEC 91
CIRCUIT: Two-path section with dielectric
COMMENT: This file examines the affect of varying the distance between the edge of a long bifurcating strip in x-band waveguide and a block of dielectric material in the below-cutoff section. As the dielectric block is moved closer to the edge, the more its presence will change Sll. This file will be used to match Sll to that found experimentally using the optimizers available in Touchstone.

DIM
FREQ GHZ
RES OH
IND NH
CAP PF
LNG CM
TIME PS
COND / OH
ANG DEG
VAR
A=2.286 ! Standard WR-90 WG
$B=1.016$
$\mathrm{FC}=6.562$
L_TOT=17 ! Total length of the structure
$L_{-}^{-} D=1.32$! Length of the dielectric block
$L_{-}^{-} A 1=0.762$! Length of first air-filled section
$\mathrm{E} \overline{\mathrm{R}}=4.61$! Relative permittivity of block
Lps=14.0 ! Inductor on air-filled side
Cps=0.003 ! Capacitor on air-filled side
Lpm \# 14.015 .2120 .0 ! Inductor on dielectric-loaded side
Cpm \# 0.00010 .00010 .035 ! Capacitor on dielectric-loaded side
EQN
L_A2=L_TOT-L_A1-L_D ! Length of remaining air-filled section
$\mathrm{A} \overline{\mathrm{I}}=\mathrm{A} / 2^{-} \quad$: Width of left \& right halves
$\mathrm{Ar}=\mathrm{A} / 2$
СКт
! Define LEFT and RIGHT halves
PLC 10 L^Apm C^Cpm
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} L_{-A 1} E R=1 \quad R H O=1$

```
    RWG 2 3 A^Al B^B L^N D ER^ER RHO=1
    RWG 3 4 A^Al B^B L^^L_A2 ER=1 RHO=1
    DEF2P 1 4 LEFT
    PLC 1 0 L^Lps C^Cps
    RWG 1 2 A^Ar B^B L^L_TOT ER=1 RHO=1
    DEF2P 1 2 RIGHT
! Connect the halves together as a Two-Path Model (TPMOD)
LEFT 1 }
RIGHT 1 }
DEF2P 1 2 TPMOD
! Set up termination of matched load
    RWGT 1 A^A B^B ER=1 RHO=1
    DEF1P 1 WEDGE
! Set up split section terminated with a matched load as a l-port
! network and call it Loaded Two-Path Model (LD_TPMOD)
    TPMOD 1 2
    WEDGE }
    DEFIP 1 LD_TPMOD
! Define a 1-port Two-Path WG (TPWG) based on data from the
! BIFWGXXX.S1P data file (XXX is the distance from the edge to
! the dielectric block in mils).
    S1PA 1 O BIFWG300.S1P
    DEF1P }1\mathrm{ TPWG200
TERM
    LD_TPMOD WEDGE
PROC
        MOD_ERR=LD_TPMOD/TPWG300 ! The result is the angle difference
OUT
    LD_TPMOD DB[S11] GR1 ! Return loss
    LD_TPMOD MAG[S11] GR2
    LD_TPMOD ANG[S11] GR3
    LD_TPMOD S11 SC2
    TPWG300 DB[S11] GR1 ! Return loss
    TPWG300 MAG[S11] GR2
    TPWG300 ANG[S11] GR3
    TPWG300 S11 SC2
FREQ
    SWEEP 8 12 0.1
! SWEEP 9.3 9.5 0.01
GRID
    RANGE 8 12 0.5
```

```
        GR3 90 150 10
        RANGE 9.3 9.5 0.025
    OPT
        RANGE 8 9
        MOD_ERR ANG[S11]=0
    RANGEE 9.5 12
    MOD_ERR ANG[S11]=0
TOL
```


APPENDIX D. FINAL MODEL TOUCHSTONE CIRCUIT FILE

```
! FILE: Two-Path Dielectric Resonator Filter (TPDRF)
USER: LT Gregory Miller
DATE: 24 SEP 91
REVISED: }16\mathrm{ DEC }9
CIRCUIT: Two-path cutoff waveguide dielecrtic resonator filter
COMMENT: This file is a trial of some different WG/dielectric
    combinations. It is based on a design in Ref. 2
    It. simulates both halves of a split WG, with a different
    parallel inductor and capacitor on the two paths to model
    the losses due to the dicontinuity between the standard
    WG and the split section.
    It also incorporates capacitive windows implemented as
        frequency-dependent capacitors. The frequency dependence
        is represented as an equation relating Bc/Yo to
        capacitive window geometry found in Ref. 6.
DIM
```

FREQ GHZ
RES OH
IND NH
CAP PF
LNG CM
TIME PS
COND / OH
ANG RAD
VAR
$A g=2.286$! WR-90 WG
$A I=1.18$! Left and right halves are not symmetric
$A r=1.09$
$B=1.016$
ER=3.78 ! Dielectric constant used by Shigesawa, et al.
L1=0.69 ! Length of 1 st \& last air-filled section, main path
L2 $2=1.33$! Length of 2 nd $\& 3$ rd air-filled section, main path
$\mathrm{L} 3=2.01$! Length of 1 st \& last air-filled section, subs path
D1=0.40 ! Length of 1 st \& last er-filled section, main path
D2 $=0.40$! Length of middle er-filled section, main path
D3 $=1.22$! Length of er-filled section, subsidiary path
Cpm=0.002 ! Value of parallel capacitor, main path (pF)
Lpm=19.8 ! Value of parallel inductor, main path (nH)

Cps=0.003 ! Value of parallel capacitor, subsidiary path (PF)
Lps=14.0 ! Value of parallel inductor, subsidiary path (nH)
d=0.1138 ! Size of capacitive window (cm)

EQN

! Equations for FREQ-dependent element (capacitive window)
PI=3.1415927
FC=6.562 ! Cutoff frequency
$\mathrm{FO}=9.5 \quad$! Center frequency
lam=30/FREQ ! Wavelength in cm if FREQ in GHz
Gfac=(1-(Fc/FREQ)**2)**0.5
! Guide factor
lamg=lam/Gfac
$\mathrm{ZO}=(120 * \mathrm{PI} * 2 * \mathrm{~B} / \mathrm{Ag}) / \mathrm{Gfac}$
! Guided wavelength
! Characteristic impedance
BC_Yo=(4*B/lamg)*LN(1/SIN(PI*d/(2*b)))! Normalized susceptance
CC $=1000 * B C$ Yo/(Zo*2*PI*FREQ) ! FREQ-dependent capacitance
Gfaco=(1-($\overline{\mathrm{F}} \mathrm{C} / \mathrm{FO}) * * 2) * * 0.5$
$\mathrm{Lc}=0.5 *(30 / \mathrm{Fo}) / \mathrm{Gfaco}$
! Guide factor at Fo
! Half a guided wavelength at Fo

CKT
! Define each block
RWG $12 A^{\wedge} A l B^{\wedge} B$ L^L1 $E R=1 \quad$ RHO $=1$
DEF2P 12 LWG1
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} D 1$ ER^ER RHO=1
DEF2P 12 LWGD1
RWG $12 A^{\wedge} A 1$ B^B L^L2 $E R=1 \quad \mathrm{RHO}=1$
DEF2P 12 LWG2
RWG $12 \mathrm{~A}^{\wedge} \mathrm{Al} \mathrm{B}^{\wedge} \mathrm{B}$ L^D2 $\mathrm{ER} \wedge \mathrm{ER}$ RHO=1
DEF2P 12 LWGD2
RWG $12 \mathrm{~A}^{\wedge} \mathrm{Ar} \mathrm{B}^{\wedge} \mathrm{B}$ L^L3 $\mathrm{ER}=1 \mathrm{RHO}=1$
DEF2P 12 RWG1
RWG $12 A^{\wedge} A r B^{\wedge} B L^{\wedge} D 3$ ER^ER RHO=1
DEF2P 12 RWGD
! Connect the elements, and define them as LEFT and RIGHT halves.
PLC 10 L^Lpm C^Cpm
LWG1 12
LWGD1 23
LWG2 34
LWGD2 45
LWG2 65
LWGD1 76
LWG1 87
PLC 80 L^Lpm C^Cpm
DEF2P 18 LEFT

```
    PLC 1 0 L^Lps C^Cps
    RWG1 1 2
    RWGD 2 3
    RWG14 }
    PLC 4 0 L^Lps C^Cps
    DEF2P 1 4 RIGHT
! Connect them together and define it as a two-path bandpass
! filter (TPBPF).
    LEFT 1 }
    RIGHT 1 2
    DEF2P 1 2 TPBPF
! Connect a capacitive window at the proper length and define
! this as the LEAD section.
    CAP 1 0 C^Cc
    RWG 1 2 A^Ag B^B L^LC ER=1 RHO=1
    DEF2P 1 2 LEAD
! This is a filter with capacitive windows (FIL_CW).
    LEAD 1 }
    TPBPF 2 3
    LEAD 4 3
    DEF2P 1 4 FIL_CW
! Set up termination of matched load.
    RWGT 1 A^Ag B^B ER=1 RHO=1
    DEF1P 1 WEDGE
TERM
    FIL_CW WEDGE WEDGE
PROC
OUT
    FIL_CW DB[S21] GR1 ! Insertion loss
! FI\overline{L}CW DB[S11] GR1 ! Return loss
FREQ
    SWEEP 8 13 0.05
    SWEEP 8.0 8.3 0.01
    SWEEP 10.75 11.1 0.01
    SWEEP 9.2 9.9 0.02
GRID
    RANGE 8 13 0.5
        RANGE 9.0 10.0 0.25
    GR1 -3 0 1
```


APPENDIX E. SEPARATED PATHS TOUCHSTONE CIRCUIT FILE

```
FILE: Left and Right Paths (L_R_PATH)
USER: LT Gregory Miller
DATE: }12\mathrm{ DEC }9
REVISED: }13\mathrm{ DEC 91
CIRCUIT: Two-path cutoff waveguide dielecrtic resonator filter
COMMENT: This file is a trial of some different WG/dielectric
    combinations. It is based on a design in Ref.2
    It simulates both halves of a split WG, with a different
    parallel inductor and capacitor on the two paths to model
        the losses due to the dicontinuity between the standard
        WG and the split section.
    It also incorporates capacitive windows implementea as
    frequency-dependent capacitors. The frequency dependence
    is represented as an equation relating BC/Yo to
    capacitive window geometry found in Ref. 6.
    This file looks specifically at the magnitude and phase
    of S21 of the main and subsidiary paths.
```

DIM
FREQ GHZ
RES OH
IND NH
CAP PF
LNG CM
TIME PS
COND / OH
ANG DEG
VAR
$A g=2.286$! WR-90 WG spilt in half
$A 1=1.18$! left and right halves are not symmetric
$\mathrm{Ar}=1.09$
$B=1.016$
$E R=3.78$! Dielectric constant used by Shigesawa, et al.
L1 $=0.69$! Length of 1 st \& last air-filled section, main path
L2 $2=1.33$! Length of 2 nd $\& 3$ rd air-filled section, main path
L3 $=2.01$! Length of $1 s t \&$ last air-filled section, subs path
D1=0.40 ! Length of 1 st \& last er-filled section, main path
$D 2=0.40$! Length of middle er-filled section, main path
D3=1.22 ! Length of er-filled section, subsidiary path

```
    Cpm=0.002 ! Value of parallel capacitor, main path (pF)
    Lpm=19.8 ! Value of parallel inductor, main path (nH)
    Cps=0.003 ! Value of parallel capacitor, subsidiary path (pF)
    Lps=14.0 ! Value of parallel inductor, subsidiary path (nH)
    d=0.1138 ! Size of capacitive window (cm)
EQN
! Equations for FREQ-dependent element (capacitive window)
    PI=3.1415927
    FC=6.562 ! Cutoff frequency
    FO=9.5 ! Center frequency
    lam=30/FREQ ! Wavelength in cm if FREQ in GHz
    Gfac=(1-(FC/FREQ)**2)**0.5
    lamg=lam/Gfac
    ZO=(120*PI*2*B/Ag)/Gfac
    BC_YO=(4*B/lamg)*LN(1/SIN(180*d/(2*b)))!Normalized susceptance
    Cc=1000*Bc_Yo/(Zo*2*PI*FREQ) ! FREQ-dependent capacitance
    Gfaco=(1-(\overline{FC/FO)**2)**0.5 ! Guide factor at Fo}
    Lc=0.5*(30/Fo)/Gfaco ! Half a guided wavelength at Fo
CKT
! Define each block
    RWG 1 2 A^A1 B^B L^Ll ER=1 RHO=1
    DEF2P 1 2 LWG1
    RWG12 1 A^Al B^B L^D1 ER^ER RHO=1
    DEF2P 1 2 LWGD1
    RWG 1 2 A^Al B^B L^L2 ER=1 RHO=1
    DEF2P 1 2 LWG2
```



```
    DEF2P 1 2 LWGD2
    RWG 1 2 A^Ar B^B L^L3 ER=1 RHO=1
    DEF2P 1 2 RWG1
    RWG 1 2 A^Ar B^B L^D3 ER^ER RHO=1
    DEF2P 1 2 RWGD
! Connect the elements and define them as LEFT and RIGHT halves.
    PLC 1 0 L^Lpm C^Cpm
    LWG1 1 2
    LWGD1 2 3
    LWG2 3 4
    LWGD2 4 5
    LWG2 6 5
    LWGD1 }7
    LWG1 }8
    PLC 8 0 L^Lpm C^Cpm
    DEF2P 1 8 LEFT
```

```
    PLC 1 0 L^Nps C^Cps
    RWG1 1 2
    RWGD 2 3
    RWG1 4 3
    PLC 4 0 L^Lps C^Cps
    DEF2P 1 4 RIGHT
! DUMMY sides with no dielectric blocks in them will be needed
    PLC 1 0 L^Lpm C^Cpm
    RWG 1 2 A^Al B^B L=5.24 ER=1 RHO=1
    PLC 2 0 L^Lpm C^Cpm
    DEF2P 1 2 DUM_L
    PLC 1 0 L^Lpm C^Cps
    RWG 1 ¿ A A^AM B^B L=5.24 ER=1 RHO=1
    PLC 2 0 L^Lpm C^Cps
    DEF2P 1 2 DUM_R
! Connect a capacitive window at the proper length and define
! this as the LEAD section.
    CAP 1 0 C^CC
    RWG 1 2 A^Ag B^B L^Lc ER=1 RHO=1
    DEF2P 1 2 LEAD
! Set up left and right halves by themselves.
! Connect the left and right sides to the lead and define them as
MAIN path and SUBSidiary path, respectively.
    LEAD 1 }
    LEFT 2 }
    DUM R 2 3
    LEAD}
    DEF2P 1 4 MAIN
    LEAD 1 2
    RIGHT 2 3
    DUM L 2 3
    LEAD 4 
    DEF2P 1 4 SUBS
! Check the lead section by itself.
    LEAD 1 }
    PLC 2 0 L^Lpm C^Cpm
    PLC 2 0 L^Lps C^Cps
    DEF2P 1 2 LEAD_D
! Set up termination of matched load.
    RWGT 1 A^Ag B^B ER=1 RHO=1
    DEF1P 1 WEDGE
```

TERM
MAIN WEDGE WEDGE

SUBS WEDGE WEDGE LEAD_D WEDGE WEDGE

PROC
ouT
MAIN DB[S21] GR1A
MAIN ANG[S21] GR1 SUBS DB[S21] GR2A SUBS ANG[S21] GR2 LEAD_D DB[S21] GR3A LEAD_D ANG[S21] GR3

FREQ
SWEEP 8130.05
SWEEP 8.0 8.2 0.01
SWEEP $9.39 .8 \quad 0.01$
SWEEP 10.7510 .950 .01
SWEEP 12.8130 .01

GRID

RANGE 8130.5 GR1 -180 $180 \quad 20$
GR1A -95 0
GR2 $-180 \quad 180 \quad 20$
GR2A -95 0
GR3 -180 $180 \quad 20$
GR3A -6 0
OPT
TOL

APPENDIX F. OPTIMIZED FILTER DESIGN TOUCHSTONE CIRCUIT FILE

```
FILE: A Two-Path Cutoff Waveguide Dielectric Resonator
    Filter Designed w/ optimizer (DES_O)
USER: LT Gregory Miller
DATE: 20 DEC 91
REVISED: }9\mathrm{ JAN }9
CIRCUIT: Two-path cutoff waveguide dielecrtic resonator filter
```

COMMENT: This file is the first attempt to design a two-path
cutoff waveguide dielectric resonator filter. It
simulates both halves of a split $W G$, with a parallel
inductor and capacitor to model the losses due to the
dicontinuity between the standard $W G$ and the split
section.
It also incorporates capacitive windows similar to
previous programs. They are implemented as
frequency-dependent capacitors. The frequency dependence
is represented as an equation relating $\mathrm{BC} / \mathrm{Yo}$ to
capacitive window geometry found in Ref. 6.
Optimizers are used to find values of D1, D2, D3, L2, L3,
and d. The main path will first be specified according
to the passband requirements, and then the subsidiary
path according to stopband requirements. To do this, the
subsidiary path is first replaced by a long below cutoff
section (7 cm should be long enough). Only after the
values for the main path are set will the subsidiary path
be found. L1 must be specified before optimization can
begin because it is associated with the discontinuity
elements.
DIM

FREQ GHZ
RES OH
IND NH
CAP PF
LNG CM
TIME PS
COND / OH
ANG RAD

VAR
Ag=2.286 ! WR-90 WG
Al=1.143 ! Left and right halves are symmetric
Ar=1. 143
$\mathrm{B}=1.016$

ER=2.54 ! Dielectric constant
L1=0.762 ! Length of 1 st \& last air-filled section, main path L2 \1.50883 ! Length of 2nd \& 3rd air-filled section, main path
D1\0.63037 ! Length of 1st \& last er-filled section, main path
D2\#0.5 0.604230 .66 ! Length of middle er-filled section, main
! path
D3=1.74 ! Length of er-filled section, susidiary path
Cpm=0.001 ! Value of parallel capacitor, main path (pF)
Lpm=15.21 ! Value of parallel inductor, main path (nH)
Cps=0.003 ! Value of parallel capacitor, subsidiary path (pF)
Lps=14.0 ! Value of parallel inductor, subsidiary path (nH)
$\mathrm{d} \backslash 0.14934$! Size of capacitive window (cm)
EQN

$$
\begin{array}{ll}
\mathrm{L} T O T=2 *(\mathrm{~L} 1+\mathrm{L} 2+\mathrm{D} 1)+\mathrm{D} 2 & \text { ! Total length of filter } \\
\mathrm{L} \overline{3}=(\mathrm{L} \text { TOT-D3)/2 } & \text { ! Length of 1st \& last air-filled } \\
& \text { ! section, subs path }
\end{array}
$$

! Equations for $F R E Q-d e p e n d e n t$ element (capacitive window)
PI=3.1415927
$\mathrm{FC}=6.562 \quad$! Cutoff frequency (GHz)
$\mathrm{FO}=10.5 \quad$! Center frequency (GHz)
lam=30/FREQ ! Wavelength in cm if FREQ in GHz
Gfac=(1-(Fc/FREQ)**2)**0.5
Guide factor
lamg=lam/Gfac
$\mathrm{ZO}=(120 * \mathrm{PI} * 2 * \mathrm{~B} / \mathrm{Ag}) / \mathrm{Gfac} \quad!$ Characteristic impedance
BC_YO=(4*B/lamg)*LN(1/SIN(PI*d/(2*b)))! Normalized susceptance
$\mathrm{CC}=1000 * \mathrm{BC}$ YO/ (ZO*2*PI*FREQ) ! FREQ-dependent capacitance
Gfaco=(1-($\overline{\mathrm{F}} / \mathrm{FO}) * * 2) * * 0.5$! Guide factor at Fo
Lc $=0.5 *(30 / \mathrm{Fo}) / \mathrm{Gfaco} \quad$! Half a guided wavelength at Fo

CKT

! Define each block
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} L 1 E R=1 \quad$ RHO=1
DEF2P 12 LWG1
RWG $12 A^{\wedge}$ Al $B^{\wedge} B L^{\wedge} D 1$ ER^ER RHO=1
DEF2P 12 LWGD1
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} L 2 \quad E R=1 \quad$ RHO=1
DEF2P 12 LWG2
RWG $12 A^{\wedge} A 1 B^{\wedge} B L^{\wedge} D 2$ ER^ER RHO=1
DEF2P 12 LWGD2
RWG $12 \mathrm{~A}^{\wedge} \mathrm{Ar} \mathrm{B}^{\wedge} \mathrm{B}$ L^L3 $\mathrm{ER}=1 \quad \mathrm{RHO}=1$
DEF2P 12 RWG1

RWG $12 \mathrm{~A}^{\wedge} \mathrm{Ar} \mathrm{B}^{\wedge} \mathrm{B} \mathrm{L}^{\wedge} \mathrm{D} 3 \mathrm{ER}$ ^ER $\mathrm{RHO}=1$
DEF2P 12 RWGD
! Connect the elements, and define them as LEFT and RIGHT halves.
! First the LEFT half (main path).
PLC $10 L^{\wedge} \mathrm{Lpm} \mathrm{C}^{\wedge} \mathrm{Cpm}$
LWG1 12
LWGD1 23
LWG2 34
LWGD2 45
LWG2 65
LWGD1 76
LWG1 87
PLC $80 L^{\wedge} L p m C^{\wedge} C p m$
DEF2P 18 LEFT
! The RIGHT half (subsidiary path) is replaced by a long below
! cutoff section during the design of the main path. After the
! main path is determined, the subsidiary path is designed.
PLC 10 L^Lps C^Cps
RWG1 12
RWGD 23
RWG1 43
! RWG $12 A^{\wedge}$ Ar $B^{\wedge} \mathrm{B} \quad \mathrm{L}=7$ ER=1 $\mathrm{RHO}=1$
PLC $20 L^{\wedge} L p s C^{\wedge} C p s$
DEF2P 12 RIGHT
! Connect them together and define it as a two-path bandpass
! filter (TPBPF).
LEFT 12
RIGHT 12
DEF2P 12 TPBPF
! Connect a capacitive window at the proper length and define it
! as the LEAD section
CAP $10 \mathrm{C}^{\wedge} \mathrm{CC}$
RWG $12 \mathrm{~A}^{\wedge} \mathrm{Ag} \mathrm{B}^{\wedge} \mathrm{B} \mathrm{L}^{\wedge} \mathrm{LC}$ ER=1 $\mathrm{RHO}=1$
DEF2P 12 LEAD
! This is a filter with capacitive windows (FIL_CW). LEAD 12 TPBPF 23
LEAD 43
DEF2P 14 FIL_CW
! Set up termination of matched load
RWGT $1 A^{\wedge} A g B^{\wedge} B$ ER=1 $R H O=1$
DEF1P 1 WEDGE

TERM
FIL_CW WEDGE WEDGE

PROC
ouT
FIL_CW DB[S21] GR1 ! Insertion loss ! FIL_CW DB[S11] GR1 ! Return loss

FREQ

SWEEP 8130.05
SWEEP 10.3 $10.7 \quad 0.02$
SWEEP 9.19 .80 .02
SWEEP $10.8 \quad 11.1 \quad 0.02$
SWEEP $11.812 .2 \quad 0.02$
GRID
RANGE 8130.5
$!$ RANGE $1011 \quad 0.25$
$!\quad$ GR1 -1 00.1
OPT
RANGE 10.3510 .65
FIL_CW DB[S21] > -0.1
TOL

LIST OF REFERENCES

1. Shigesawa, Hiroshi and others,"Two path cutoff waveguide resonator filters with attenuation poles," 1985 IEEE MTT-S Int. Microwave Symp. Dig., pp. 357-360, June 1985.
2. Shigesawa, Hiroshi and others, "Two-path cutoff waveguide dielectric resonator filters," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-37, pp. 1105-1112, July 1989.
3. Shin, Y. C. and Gray, K. C., "Analysis and design of evanescent-mode waveguide dielectric resonator filters," 1984 IEEE MTT-S Int. Microwave Symp. Dig., pp. 238-239, May 1984.
4. Levy, Ralph, "Theory of direct-coupled-cavity filters," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT15, pp. 340-348, June 1967.
5. Knorr, Jeffrey B., "Synthesis of equivalent circuits for inductive strips in homogeneous finline: $\mathrm{W} / \mathrm{b}=1$, " Internatinal Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 1, pp. 306-314, July 1991.
6. Rizzi, Peter A., Microwave Enc :neering, Prentice Hall, Englewood Cliffs, New Jersey, 1988.
7. Touchstone Reference Manual. EEsof, Inc., Westlake Village, California, 1989.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145
2. Library, Code 52 2
Naval Postgraduate School Monterey, CA 93943-5002
3. Chairman, Code EC 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5000
4. Professor J.B. Knorr, Code EC/Ko 2
Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000
5. Professor D.C. Jenn, Code EC/Jn 1
Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000
6. Commanding Officer 1
Microwave/Millimeter Wave Branch (Attn: Dave Rubin, Code 753) Naval Ocean Systems Center
San Diego, CA 92152
7. Commanding Officer 1
RF Development Section
(Attn: Joe Mosko, Code $35203)$
Naval Weapons Center
China Lake, CA 93555
8. LT G.A. Miller, USN 2
East 903 Decatur
Spokane, WA 99207
